LARGE-SCALE DRIVERS OF CLOUD, ATMOSPHERIC STRUCTURE, AND SURFACE VARIABILITY IN ALASKA USING SELF ORGANIZING MAPS Matthew Shupe and Michael Gallagher University of Colorado / NOAA # Background #### **Self Organizing Maps** - Groups similar data vectors into generalized patterns ("nodes") - Nodes closer to each other are similar, distant are dissimilar - Input: daily SLP anomaly patterns from NCEP-NCAR reanalysis - Output: grid of generalized patterns and day list for each node #### **Data Used Here** - Oliktok: 9/2013 6/2017 - Barrow: 1/1998 6/2017 - Seasonal background subtract ### Master SOM 5x4 is a trade-off between uniqueness and statistical robustness #### Seasonal Occurrence # Master SOM # Pressure | | | Bar | rrow, Pressure [n | nb] | | | | Olii | ktok, Pressure [r | nb] | | |---|---|--|--|---|--|---|---|---|---|---|---| | 1 | 1025.8
1 013.4
8.2
274
998.8 | 1026.4
1016.2
7.2
238
1004.0 | 1033.9
1 021.4
8.3
258
1006.9 | 1037.7
1024.3
9.4
235
1009.3 | 1043.2
1024.5
10.6
216
1008.2 | 1 | 1027.5
1015.3
8.3
73
1000.8 | 1027.7
1018.0
7.8
66
1004.3 | 1035.4
1021.7
9.5
77
1007.8 | 1038.9
1024.7
9.8
85
1006.7 | 1034.0
1022.4
7.5
48
1006.1 | | 2 | 1023.5
1013.5
6.6
293
1001.3 | 1023.7
1015.5
6.3
266
1003.8 | 1033.6
1020.1
8.5
198
1007.1 | 1035.9
1023.0
8.9
157
1007.6 | 1042.4
1025.0
10.3
231
1008.1 | 2 | 1022.1
1012.8
5.2
61
1003.4 | 1022.9
1013.9
5.9
71
1002.7 | 1032.4
1016.6
8.6
49
995.8 | 1035.6
1021.9
8.4
47
1007.4 | 1035.3
1020.8
8.9
56
1006.5 | | 3 | 1024.8
1 011.3
7.6
380
999.3 | 1020.1
1010.7
6.2
203
999.6 | 1024.1
1014.4
6.1
223
1003.8 | 1036.5
1019.4
8.7
209
1007.2 | 1040.1
1022.5
8.9
1.36
1009.1 | 3 | 1023.0
1011.7
7.2
120
999.7 | 1019.4
1010.0
6.2
48
995.8 | 1024.0
1013.3
6.0
67
1002.1 | 1030.7
1018.7
7.1
47
1007.1 | 1042.4
1024.9
9.5
44
1010.9 | | 4 | 1019.6
1006.5
7.9
247
993.1 | 1018.5
1005.8
8.3
283
990.7 | 1023.1
1008.5
8.8
346
992.2 | 1022.5
1009.8
8.8
245
995.7 | 1031.7
1014.3
9.8
350
998.9 | 4 | 1015.8
1005.7
7.6
59
995.0 | 1016.5
1004.3
8.1
55
988.0 | 1017.9
1007.2
7.8
94
991.1 | 1021.9
1010.0
7.5
69
995.0 | 1028.9
1012.5
9.1
141
997.1 | | | Α | В | С | D | Ε | | Α | В | С | D | E | # Cloud Frac | | Barrow, Cloud Fraction (ceilo) [%] | | | | | | | |---|------------------------------------|--------------|--------------|--------------|--------------|--|--| | 1 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | | | | 73.21 | 74.59 | 64.41 | 57.36 | 55.35 | | | | | 29.67 | 27.59 | 35.60 | 34.63 | 35.33 | | | | | 346 | 279 | 342 | 298 | 300 | | | | | 4.94 | 15.60 | 0.30 | 0.26 | 0.30 | | | | 2 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | | | | 80.91 | 75.70 | 69.07 | 63.29 | 58.42 | | | | | 27.41 | 30.35 | 35.47 | 34.00 | 33.84 | | | | | 379 | 335 | 242 | 182 | 306 | | | | | 11.65 | 5.46 | 1.15 | 3.20 | 0.26 | | | | 3 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | | | | 82.19 | 84.40 | 78.97 | 73.95 | 59.85 | | | | | 26.02 | 24.72 | 30.11 | 32.26 | 34.83 | | | | | 502 | 260 | 274 | 262 | 162 | | | | | 15.76 | 20.59 | 5.08 | 2.09 | 0.80 | | | | 4 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | | | | 87.76 | 85.63 | 82.35 | 74.29 | 65.98 | | | | | 20.48 | 24.52 | 27.09 | 31.82 | 33.32 | | | | | 315 | 350 | 431 | 311 | 458 | | | | | 34.70 | 23.81 | 16.63 | 5.94 | 3.24 | | | | | А | В | С | D | E | | | | | | Oliktok, C | Cloud Fraction (c | eilo) [%] | | |---|--------------|--------------|-------------------|--------------|--------------| | 1 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | | 73.99 | 68.48 | 66.37 | 62.23 | 52.14 | | | 26.58 | 32.04 | 36.59 | 31.34 | 34.60 | | | 74 | 66 | 75 | 80 | 48 | | | 10.41 | 3.71 | 0.02 | 3.80 | 0.02 | | 2 | 100.00 | 100.00 | 100.00 | 99.85 | 100.00 | | | 81.60 | 75.26 | 71.43 | 61.07 | 63.04 | | | 24.97 | 30.76 | 32.65 | 31.58 | 34.29 | | | 62 | 69 | 49 | 47 | 53 | | | 21.87 | 0.28 | 9.07 | 0.02 | 1.96 | | 3 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | | 78.70 | 78.22 | 84.99 | 77.22 | 64.32 | | | 26.41 | 25.74 | 24.09 | 30.29 | 32.95 | | | 120 | 50 | 64 | 45 | 42 | | | 16.81 | 24.64 | 24.00 | 5.86 | 0.06 | | 4 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | | 82.88 | 86.08 | 79.30 | 70.28 | 63.30 | | | 25.50 | 22.26 | 29.12 | 32.67 | 33.69 | | | 56 | 52 | 94 | 67 | 136 | | | 12.12 | 41.45 | 13.23 | 0.56 | 2.83 | | | Α | В | С | D | Ε | # $Temperature\ Anom$ | | | Barrow, T | emperature Ano | maly [C] | | |---|---------------|--------------|----------------|--------------|--------------| | 1 | 11.68 | 11.92 | 10.89 | 12.33 | 10.69 | | | 2.70 | 2.77 | 2.16 | 0.90 | -0.47 | | | 5.05 | 4.78 | 5.08 | 6.51 | 6.51 | | | 274 | 238 | 258 | 235 | 216 | | | -3.71 | -3.55 | -5.70 | -8.91 | -9.83 | | 2 | 6.14 | 6.20 | 7.32 | 7.76 | 7.90 | | | 0.55 | 0.26 | -0.54 | -0.29 | -0.86 | | | 3.44 | 3.38 | 4.59 | 5.13 | 5.28 | | | 292 | 263 | 198 | 156 | 231 | | | -4.27 | -4.61 | -8.72 | -8.81 | -9.65 | | 3 | 5.40 | 4.15 | 4.62 | 6.18 | 6.89 | | | -0.18 | -0.17 | -0.86 | -1.21 | -1.13 | | | 3.26 | 3.05 | 3.22 | 4.32 | 5.15 | | | 380 | 203 | 223 | 209 | 136 | | | -4.64 | -3.96 | -6.73 | -9.63 | -10.43 | | 4 | 4.24 | 4.36 | 6.92 | 6.27 | 8.77 | | | - 0.83 | -1.22 | -0.46 | -1.37 | -0.53 | | | 2.86 | 3.71 | 4.22 | 4.77 | 5.79 | | | 247 | 283 | 346 | 244 | 350 | | | -5.08 | -8.11 | -8.86 | -10.11 | -10.52 | | | А | В | С | D | Ε | | | | Oliktok, 1 | Temperature Ano | maly [C] | | |---|---------------|---------------|-----------------|--------------|---------------| | 1 | 9.99 | 9.87 | 13.27 | 12.53 | 8.53 | | | 2.13 | 1.52 | 1.64 | 1.74 | -0.94 | | | 5.11 | 4.58 | 5.47 | 5.66 | 6.01 | | | 73 | 66 | 75 | 81 | 48 | | | -6.36 | -7.59 | -6.71 | -7.57 | -12.86 | | 2 | 7.94 | 4.56 | 6.21 | 7.90 | 7.20 | | | 0.73 | -0.44 | -0.56 | -0.46 | -0.88 | | | 4.00 | 4.18 | 4.70 | 5.63 | 6.01 | | | 61 | 70 | 48 | 47 | 53 | | | -3.52 | -6.12 | -11.58 | -10.08 | -11.45 | | 3 | 6.88 | 5.21 | 3.80 | 3.97 | 8.28 | | | 0.01 | - 0.21 | - 0.96 | -0.68 | -1.67 | | | 3.45 | 3.11 | 3.04 | 3.63 | 6.50 | | | 120 | 48 | 67 | 47 | 44 | | | -4.17 | -4.58 | -5.64 | -9.62 | -14.61 | | 4 | 3.62 | 3.85 | 5.79 | 6.12 | 8.10 | | | - 0.41 | -0.83 | -0.30 | -0.47 | - 0.51 | | | 2.98 | 3.66 | 4.04 | 5.29 | 5.97 | | | 59 | 53 | 94 | 68 | 140 | | | -4.29 | -7.23 | -8.41 | -11.54 | -11.26 | | | А | В | С | D | Ε | # LWDAnom | | | Barrow | , LWD Anomaly [| W/m²] | | |---|--|--|--|---|--| | 1 | 62.19 | 60.59 | 63.68 | 74.80 | 60.34 | | | 9.42 | 11.33 | 5.90 | 5.74 | -0.25 | | | 29.85 | 30.06 | 34.48 | 37.05 | 35.26 | | | 385 | 296 | 366 | 323 | 321 | | | -40.03 | -40.02 | -49.99 | -47.88 | -47.60 | | 2 | 38.52 | 38.96 | 53.65 | 50.18 | 50.92 | | | 2.72 | 0.13 | -2.55 | -5.02 | -6.96 | | | 24.57 | 26.22 | 31.09 | 29.27 | 31.20 | | | 416 | 369 | 260 | 200 | 323 | | | -43.35 | -49.21 | -52.19 | -51.02 | -52.20 | | 3 | 29.03 | 32.22 | 35.01 | 42.83 | 48.26 | | | -1.28 | 0.80 | - 1.98 | -3.64 | -7.36 | | | 21.24 | 21.20 | 25.61 | 28.72 | 30.65 | | | 550 | 281 | 300 | 277 | 179 | | | -40.63 | -36.61 | -49.83 | -51.79 | -52.07 | | 4 | 28.45
- 4.55
23.25
356
-50.52 | 37.18
- 2.94
26.28
381
-47.62 | 45.66
-0.85
28.38
494
-51.28 | 47.58
- 3.06 31.71 347 -55.21 | 53.70
-1.17
35.18
478
-52.77 | | | А | В | С | D | Ε | | | | Oliktok | , LWD Anomaly [| W/m²] | | |---|--------------|--------------|-----------------|--------------|--------------| | 1 | 46.19 | 48.44 | 49.49 | 63.42 | 55.81 | | | 8.43 | 2.92 | 3.19 | 2.53 | -9.23 | | | 27.11 | 27.80 | 34.35 | 33.10 | 29.82 | | | 74 | 66 | 76 | 83 | 47 | | | -43.94 | -43.79 | -49.76 | -51.84 | -53.35 | | 2 | 40.77 | 31.55 | 49.44 | 28.46 | 46.96 | | | 7.01 | 1.96 | 4.28 | - 10.29 | -1.36 | | | 20.62 | 24.92 | 26.16 | 27.84 | 32.98 | | | 60 | 68 | 47 | 47 | 56 | | | -27.91 | -48.25 | -49.84 | -53.70 | -63.06 | | 3 | 26.71 | 18.34 | 25.93 | 35.73 | 43.56 | | | -2.17 | -4.52 | -0.05 | -1.30 | -2.25 | | | 20.63 | 23.58 | 23.78 | 22.13 | 31.59 | | | 120 | 44 | 64 | 42 | 42 | | | -40.77 | -64.01 | - 50.26 | -43.38 | -66.88 | | 4 | 21.80 | 34.54 | 40.68 | 46.73 | 46.15 | | | -2.54 | 3.24 | -0.50 | -0.27 | -2.37 | | | 18.64 | 24.65 | 23.90 | 30.32 | 33.70 | | | 60 | 50 | 91 | 69 | 139 | | | -43.56 | -42.13 | -45.75 | -56.37 | -53.52 | | | А | В | С | D | Ε | # Q profiles ## Cloud Frac Anom | | | Barrow, Cloud | Fraction Anoma | ly (ceilo) [%] | | |---|---|--|---|---|--| | 1 | 30.19
-5.23
29.61
346
-69.41 | 31.27
-1.87
27.44
279
-56.11 | 39.20
-7.53
33.46
342
-68.00 | 41.48
-5.77
32.19
298
-59.26 | 40.35
-7.03 33.44 300 -59.03 | | 2 | 25.91 | 30.99 | 36.36 | 40.31 | 40.87 | | | 0.81 | -2.61 | -3.72 | - 1.81 | -2.99 | | | 25.38 | 28.15 | 30.27 | 30.32 | 32.56 | | | 379 | 335 | 242 | 182 | 306 | | | -61.38 | -61.32 | -62.24 | -56.81 | -57.92 | | 3 | 26.83 | 29.11 | 31.00 | 37.23 | 39.12 | | | 2.61 | 2.78 | 1.17 | 3.07 | - 3.24 | | | 23.50 | 23.21 | 26.83 | 27.09 | 30.57 | | | 502 | 260 | 274 | 262 | 162 | | | -53.76 | –55.89 | -59.39 | –51.29 | -57.80 | | 4 | 29.81 | 34.14 | 42.30 | 39.14 | 41.15 | | | 7.36 | 5.04 | 6.24 | 4.81 | 1.19 | | | 18.11 | 22.32 | 23.76 | 26.99 | 31.77 | | | 315 | 350 | 431 | 311 | 458 | | | -29.11 | -45.25 | -44.20 | –52.53 | -56.83 | | | Α | В | С | D | E | | | | Oliktok, Cloud | Fraction Anoma | ly (ceilo) [%] | | |---|--|--|---------------------------------------|--|--| | 1 | 24.11
-1.38
25.12
74
-54.81 | 33.40
-7.60
30.98
66
-64.53 | 41.00
-7.16 36.14 75 -75.66 | 36.18
-2.99
30.40
80
-59.96 | 38.87
-11.22
32.87
48
-57.33 | | 2 | 33.54 | 36.36 | 33.82 | 30.72 | 39.28 | | | 3.86 | 0.33 | -0.65 | -6.98 | 1.32 | | | 22.72 | 27.45 | 28.45 | 28.02 | 32.82 | | | 62 | 69 | 49 | 47 | 53 | | | -50.20 | -61.52 | -53.52 | -60.38 | -57.90 | | 3 | 21.11 | 27.15 | 35.98 | 36.38 | 44.43 | | | - 0.29 | -3.13 | 7.40 | 3.83 | 4.07 | | | 23.99 | 26.60 | 22.56 | 23.95 | 30.76 | | | 120 | 50 | 64 | 45 | 42 | | | -62.14 | -61.91 | -42.01 | -50.50 | -53.28 | | 4 | 28.79 | 42.68 | 38.19 | 44.66 | 40.28 | | | 2.11 | 7.61 | 5.76 | 4.98 | - 0.68 | | | 24.32 | 22.97 | 25.28 | 30.88 | 31.87 | | | 56 | 52 | 94 | 67 | 136 | | | -60.40 | -30.91 | -50.13 | -58.98 | -56.82 | | | Α | В | С | D | Ε | # LWP Anom | | | Barrow | , LWP Anomaly [| [g/m²] | | |---|-------------|---------------|-----------------|---------------|--------------| | 1 | 142.61 | 91.08 | 90.45 | 135.46 | 54.05 | | | - 1.85 | - 7.11 | -4.18 | 13.09 | 4.13 | | | 87.46 | 68.94 | 71.83 | 94.59 | 65.04 | | | 290 | 247 | 276 | 246 | 236 | | | -93.10 | -87.56 | -71.80 | -34.50 | -30.72 | | 2 | 138.96 | 90.50 | 65.12 | 59.83 | 35.40 | | | 1.48 | -8.80 | -9.61 | - 1.85 | -5.44 | | | 73.75 | 61.32 | 39.85 | 44.56 | 20.24 | | | 339 | 285 | 213 | 144 | 258 | | | -75.16 | -76.88 | -70.13 | -50.60 | -31.60 | | 3 | 131.12 | 111.57 | 80.07 | 67.04 | 78.61 | | | 1.49 | 1.36 | - 3.48 | -2.52 | -0.04 | | | 74.87 | 77.15 | 47.50 | 37.90 | 32.37 | | | 435 | 230 | 248 | 222 | 1.48 | | | -73.84 | -82.23 | -71.21 | -50.17 | -34.73 | | 4 | 131.04 | 120.47 | 92.28 | 88.93 | 54.14 | | | 8.81 | 3.25 | 3.66 | 2.29 | 0.06 | | | 69.83 | 55.39 | 59.65 | 44.26 | 35.70 | | | 283 | 313 | 363 | 258 | 379 | | | -70.33 | -65.61 | -64.43 | -42.24 | -32.15 | | | А | В | С | D | E | | | -20 -15 -12 -5 -4 0 4 6 12 16 20 1" | | | | | | | | |---|---|---|--|--|--|--|--|--| | | | Oliktok | , LWP Anomaly [| g/m²] | | | | | | 1 | 84.58
- 8.17
51.30
73 | 54.21
-10.68
52.47
64
-67.53 | 108.66
- 3.83
53.42
74
-68.63 | 51.73
-2.58
25.93
73
-35.27 | 19.78
-6.63
13.53
46
-35.96 | | | | | 2 | 161.09
7.91
87.99
57
-87.77 | 99.69
- 0.37
44.71
64
-55.64 | 51.37
-6.87
26.26
43
-48.80 | 28.67
-7.11
33.56
45
-64.27 | 52.48
5.08
24.39
38
-21.69 | | | | | 3 | 159.04
3.60
73.54
117
-73.10 | 79.05
-15.92
51.96
42 | 86.20
7.29
46.83
55
-49.43 | 76.68
5.45
46.25
39
-44.93 | 17.14
- 1.65
19.24
34
- 19.05 | | | | | 4 | 125.57
-0.96
66.53
55
-68.01 | 155.30
19.15
80.58
47
-58.57 | 88.99
5.41
50.32
85
-47.31 | 62.01
3.62
31.44
63
-43.29 | 67.49
2.78
37.05
122
–31.22 | | | | | | А | В | С | D | Ε | | | | # Together # What does it mean? - Warm anomalies in OLI/NSA with low over Kamchatka Peninsula, Russia - Driven by (1) enhanced LWD from warm moist air; (2) enhanced SWD from decreased clouds. - OLI surface temperature anomalies are strongly correlated with LWD anomalies (o.74), moderately correlated with PWV (o.41), but weakly correlated with cloud occurrence (o.27) or LWP (o.18) - Future work: more parameters, seasonal aspects, impact of sea ice, "trajectories" through SOM space